Abstract
Aim: Systemic allergic reactions triggered by bee and wasp venom affect approximately 3% of adults, and in severe cases, can lead to anaphylactic reactions and death. The exact cause of extraordinary deaths resulting from insect stings is often not determined in a significant number of cases. The aim of this study is to provide guidance through methodological recommendations to investigate the precise cause of deaths presumably resulting from insect stings, specifically focusing on uncovering the facts and causes of anaphylaxis.
Methodology: The study reviews literature related to anaphylaxis caused by insect stings and animal toxins, as well as its immunological background. It seeks to translate the information found in the literature into the realm of official activities related to extraordinary deaths. The study also summarises knowledge about groups of animals in Hungary that are medically significant due to their venom, providing guidance for on-site recognition, search, documentation, and recording of the most common Hymenoptera species with venom capable of frequently inducing anaphylactic reactions.
Findings: The key to diagnosing deaths caused by anaphylaxis lies in crime scene investigation. The attending medical doctor must recognise the symptoms of insect stings and ensure the collection of a blood sample for allergological purposes. A special blood collection kit has been assembled for this purpose. The blood sample, which must be stored at 2–8ºC, should be sent to the Semmelweis University Institute of Laboratory Medicine within 2 days. By measuring the level of tryptase enzyme in the blood sample and detecting the presence of specific immunoglobulin E for the venom of the respective bee or wasp species, the cause of the anaphylactic reaction can be confirmed. The crime scene investigation team should also make an effort to locate and secure the potential insect species responsible for the sting. If the forensic entomologist successfully identifies the species, it facilitates the specific IgE allergological examination for the respective venom.
Value: In cases of death resulting from insect stings, the cause is often not determined due to lack of proper caution and appropriate methods. The procedural approach recommended in the study establishes the basis for determining the precise cause of death in cases of suspected insect stings.
References
Akin, C. & Metcalfe, D. D. (2004). Systemic Mastocytosis. Annual Review of Medicine, 55, 419–432. https://doi.org/10.1146/annurev.med.55.091902.103822
Bonadonna, P., Scaffidi, L. & Boni, E. (2019). Tryptase values in anaphylaxis and insect allergy. Current Opinion in Allergy & Clinical Immunology, 19(5), 462–467. https://doi.org/10.1097/ACI.0000000000000569
Brown, A. F. (1995). Anaphylactic shock: mechanisms and treatment. Journal of Accident and Emergency Medicine, 12(2), 89–100. http://dx.doi.org/10.1136/emj.12.2.89
Brown, A. F. & Hamilton, D. L. (1998). Tick bite anaphylaxis in Australia. Emergency Medicine Journal, 15(2), 111-113. http://dx.doi.org/10.1136/emj.15.2.111
Csoma Zs., Bánkúti B., Baráth Z., Mülbacher Sz., Tóth K. & Herjavecz I. (2013). Darázs- és méhméreg allergiás betegek diagnosztikus jellemzői és specifikus immunterápiájának eredményei. Medicina Thoracalis, 66(4), 178–192.
Decastello, A. & Farkas R. (2009). Lókullancslégy (Hippobosca equina) okozta csípést követő anafilaxiás reakció egy humán eset kapcsán. Orvosi Hetilap, 150(42), 1945–1948. https://doi.org/10.1556/OH.2009.28730
Ebo, D. G., Faber, M., Sabato, V., Leysen, J., Bridts, C. H. & De Clerck, L. S. (2012). Component-resolved diagnosis of wasp (yellow jacket) venom allergy. Clinical & Experimental Allergy, 43(2), 255–261. https://doi.org/10.1111/cea.12057
Ewan, P. W. (1998). Venom allergy. BMJ, 316(7141), 1365–1368. https://doi.org/10.1136/bmj.316.7141.1365
Golden, D. B., Marsh, D. G., Kagey-Sobotka, A., Freidhoff, L., Szklo, M., Valentine, M. D. & Lichtenstein, L. M. (1989). Epidemiology of insect venom sensitivity. JAMA, 262(2), 240–244. https://doi.org/10.1001/jama.1989.03430020082033
Harris, R. J. & Jenner, R. A. (2019). Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System. Toxins, 11(2), 60. https://doi.org/10.3390/toxins11020060
King, T. P., Lu, G., Gonzalez, M., Qian, N. & Soldatova L. (1996) Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. Journal of Allergy and Clinical Immunology, 98, 588–600. https://doi.org/10.1016/S0091-6749(96)70093-3
King, T. P., Sobotka, A. K., Kochoumian, L. & Lichtenstein, L. M. (1976). Allergens of honey bee venom. Archives of Biochemistry and Biophysics, 172(2), 661-671. https://doi.org/10.1016/0003-9861(76)90121-1
Kocsis I., Péntek A., Fazekas Cs. & Kuti R. (2016). Műszaki mentések hártyásszárnyúak okozta veszélyhelyzetekben. Védelem Tudomány, 1(3), 78–91.
Komi, D. E. A., Shafaghat, F. & Zweiner, R. D. (2018). Immunology of Bee Venom. Clinical Reviews in Allergy & Immunology, 54, 386–396. https://doi.org/10.1007/s12016-017-8597-4
Korsós Z., Dányi L., Kontschán J. & Murányi D. (2006). Az öves szkolopendra (Scolopendra cingulata Latr., 1829) magyarországi állományainak helyzete. Természetvédelmi Közlemények, 12, 155–163.
Malina T., Babocsay G., Krecsák L., Schuller P., Zacher, G. & Vasas G. (2012). Górcső alatt a keresztes vipera (Vipera berus) által okozott marások és kezelésük Magyarországon. Orvosi Hetilap, 153(28), 1092–1105. https://doi.org/10.1556/OH.2012.29407
Maretić, Z & Lebez, D. (1979). Araneism, with special reference to Europe. Nolit Publishing.
Nentwig, W., Gnädinger, M., Fuchs, J. & Ceschi, A. (2013). A two year study of verified spider bites in Switzerland and a review of the European spider bite literature. Toxicon, 73(13), 104–110. https://doi.org/10.1016/j.toxicon.2013.07.010
Pastorello, E. A., Borgonova, L., Preziosi, D., Schroeder, J. W., Pravettoni, V., Aversano, M. G., Pastori, S., Bilò, M. B., Piantanida, M., Losappio, L. M., Nichelatti, M., Rossi, C. M. & Farioli, L. (2021). Basal Tryptase High Levels Associated with a History of Arterial Hypertension and Hypercholesterolemia Represent Risk Factors for Severe Anaphylaxis in Hymenoptera Venom-Allergic Subjects over 50 Years Old. International Archives of Allergy and Immunology, 182(2), 146–152. https://doi.org/10.1159/000510527
Potiwat, R. & Sitcharungsi, R. (2015). Ant allergens and hypersensitivity reactions in response to ant stings. Asian Pacific Journal of Allergy and Immunology, 33(4), 267–275.
Sütő B. & Domokos K. (2023). Az anafilaxia perioperatív vonatkozásai. Orvosi Hetilap, 164(22), 871–877. https://doi.org/10.1556/650.2023.32789
Szakos E., Drahos A. & Barkai L. (2016). Rovarméreg-allergia gyermekkorban. Egészségtudományi Közlemények, 6(1), 5–9.
Utkin, Y. N. (2015). Animal venom studies: Current benefits and future developments. World Journal of Biological Chemistry, 6(2), 28–33. https://doi.org/10.4331/wjbc.v6.i2.28
Vas Z. (2019). Darazsak. Magyar Természettudományi Múzeum.
Zuberbier, T. (1999). Pseudoallergy or nonallergic hypersensitivity. Allergy, 54(4), 397–398. https://doi.org/10.1034/j.1398-9995.1999.00155.x
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Academic Journal of Internal Affairs